The Dirac Equation and General Linear Transformations of Coordinate Systems

نویسندگان

  • Alexander Yu
  • Alexander Vlasov
چکیده

The spinor representation of the Lorentz group does not accept simple generalization with the group GL(4,R) of general linear coordinate transformations. The Dirac equation may be written for an arbitrary choice of a coordinate system and a metric, but the covariant linear transformations of the fourcomponent Dirac spinor exist only for isometries. For usual diagonal Minkowski metric the isometry is the Lorentz transformation. On the other hand, it is possible to define the Dirac operator on the space of anti-symmetric (exterior) forms, and in such a case the equation is covariant for an arbitrary general linear transformation. The space of the exterior forms is sixteen-dimensional, but usual Dirac equation is defined for four-dimensional complex space of Dirac spinors. Using suggested analogy, in present paper is discussed possibility to consider the space of Dirac spinors as some “subsystem” of a bigger space, where the group GL(4,R) of General Relativity acts in a covariant way. For such purposes in this article is considered both Grassmann algebra of complex anti-symmetric forms and Clifford algebra of Dirac matrices. Both algebras have same dimension as linear spaces, but different structure of multiplication. The underlying sixteen-dimensional linear space also may be considered either as space of complex 4× 4 matrices, or as space of states of two particles: the initial Dirac spinor and some auxiliary system. It is shown also, that such approach is in good agreement with well known idea to consider Dirac spinor as some ideal of Clifford algebra. Some other possible implications of given model are also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Observations on Dirac Measure-Preserving Transformations and their Results

Dirac measure is an important measure in many related branches to mathematics. The current paper characterizes measure-preserving transformations between two Dirac measure spaces or a Dirac measure space and a probability measure space. Also, it studies isomorphic Dirac measure spaces, equivalence Dirac measure algebras, and conjugate of Dirac measure spaces. The equivalence classes of a Dirac ...

متن کامل

0 Geometry of the Dirac and Reduced Phase Space Quantization of Systems Subject to First Class Constraints

Geometric properties of operators of quantum Dirac constraints and physical observables are studied in semiclassical theory of generic constrained systems. The invariance transformations of the classical theory – contact canonical transformations and arbitrary changes of constraint basis – are promoted to the quantum domain as unitary equivalence transformations. Geometry of the quantum reducti...

متن کامل

Parameter determination in a parabolic inverse problem in general dimensions

It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...

متن کامل

Sequential second derivative general linear methods for stiff systems

‎Second derivative general linear methods (SGLMs) as an extension‎ ‎of general linear methods (GLMs) have been introduced to improve‎ ‎the stability and accuracy properties of GLMs‎. ‎The coefficients of‎ ‎SGLMs are given by six matrices‎, ‎instead of four matrices for‎ ‎GLMs‎, ‎which are obtained by solving nonlinear systems of order and‎ ‎usually Runge--Kutta stability conditions‎. ‎In this p...

متن کامل

Positive solution of non-square fully Fuzzy linear system of equation in general form using least square method

In this paper, we propose the least-squares method for computing the positive solution of a $mtimes n$ fully fuzzy linear system (FFLS) of equations, where $m > n$, based on Kaffman's arithmetic operations on fuzzy numbers that introduced in [18]. First, we consider all elements of coefficient matrix are non-negative or non-positive. Also, we obtain 1-cut of the fuzzy number vector solution of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008